Math, asked by veenak448, 1 month ago

If a and B zeros of the quadratic polynomial x²-3x+5,then evaluate : I) a² + B² ii) a³ + ß³​

Answers

Answered by suhail2070
1

Answer:

 { \alpha }^{2}  +  { \beta }^{2}  =  - 1. \\  \\  { \alpha }^{3}  +  { \beta }^{3}  =  - 18.

Step-by-step explanation:

 {x}^{2}  - 3x + 5 = 0 \\  \\  \alpha   + \beta  = 3 \\  \\  \\  \alpha  \beta  = 5 \\  \\ (i) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha   + \beta) }^{2}  - 2 \alpha  \beta  \\  \\  =  {3}^{2}  - 2 \times 5 \\  \\  = 9 - 10 \\  \\  =  - 1. \\  \\  \\  \\ (ii) \:  \:  \:  \:  \:  { \alpha }^{3}  +  { \beta }^{3}  =  {( \alpha   + \beta )}^{3}  - 3 \alpha  \beta ( \alpha +   \beta ) \\  \\  =  {3}^{3}  - 3(5)(3) \\  \\  = 27 - 45 \\  \\  =  - 18.

Answered by manojkumar7152
0

Answer:

2

+

2

=

1.

3

+

3

=

18.

α

2

2

=−1.

α

3

3

=−18.

Step-by-step explanation:

2

3

+

5

=

0

+

=

3

=

5

(

)

2

+

2

=

(

+

)

2

2

=

3

2

2

×

5

=

9

10

=

1.

(

)

3

+

3

=

(

+

)

3

3

(

+

)

=

3

3

3

(

5

)

(

3

)

=

27

45

=

18.

x

2

−3x+5=0

α+β=3

αβ=5

(i)α

2

2

=(α+β)

2

−2αβ

=3

2

−2×5

=9−10

=−1.

(ii)α

3

3

=(α+β)

3

−3αβ(α+β)

=3

3

−3(5)(3)

=27−45

=−18.

Similar questions