Math, asked by mangalleibisal, 2 months ago

if a and bita are the zeros of the polynomial 4s²+4s+1 then the value of alpha × bita is​

Answers

Answered by prashantjha710
4

Answer:

your answer

thanks my answer

Attachments:
Answered by VεnusVεronίcα
18

Given : The polynomial \rm 4s^2+4s+1 has two zeroes \alpha and \rm\beta.

To find : Here, we shall find the value of \alpha\beta.

\\

~~~~~__________________

\\

When we compare \rm 4s^2+4s+1 to \rm ax^2+bx+c, we get the values :

  • \rm a = 4
  •  \rm b=4
  • \rm c = 1

Also, we know that :

~~~\rm \dashrightarrow ~~\alpha\beta~\lgroup Product~ of~ zeroes\rgroup ~=~\dfrac{c}{a}

~~~\rm \dashrightarrow ~~\alpha\beta~=~\dfrac{1}{4}

\bf {{\therefore~ The~ value~ of ~\alpha\beta~ is ~\bf{\dfrac{1}{4}.}}}

\\

~~~~~__________________

\\

Verification : We'll verify by splitting the middle term and knowing the zeroes.

~~~\rm \dashrightarrow~~4s^2+4s+1

~~~\rm \dashrightarrow ~~ 4s^2+2s+2s+1

~~~\rm \dashrightarrow~~ 2s(2s+1)+1(2s+1)

~~~\rm \dashrightarrow ~~(2s+1)(2s+1)

~~~\rm \dashrightarrow~~ s~ = ~\dfrac{-1}{2}

\bf {{\therefore~ The~ zeroes~ of~ 4s^2+4s+1~are~ \bf{\dfrac{-1}{2},~ \dfrac{-1}{2}.}}}

Multiplying their zeroes :

~~~\rm \dashrightarrow ~~\alpha\beta~=~\dfrac{1}{2}

~~~\rm \dashrightarrow ~~ \bigg\lgroup\dfrac{-1}{2}\bigg\rgroup \times\bigg\lgroup\dfrac{-1}{2}\bigg\rgroup~=~\dfrac{1}{4}

~~~\rm \dashrightarrow~~\dfrac{1}{4}~=~\dfrac{1}{4}

LHS = RHS

 {\bf Henceforth,~ verified!}

Similar questions