Math, asked by coolgirlsiyanda, 1 year ago

If a- b =0.9 and ab = 0.36 find a+ b and a^2-b^2

Answers

Answered by sulagnapalit8263
49

Given:- a - b = 0.9 and ab = 0.36.

To find:- find the value of a+ b and a^2-b^2.

Solution:-

(a - b)=0.9

ab=0.36

(a+b)^2

=(a-b)^2+4ab

=(0.9)^2+4*(0.36) [where, a-b=0.9,ab=0.36]

=2.25

(a+b)^2=2.25

or, (a+b)=√2.25

or, (a+b)= ± 1.5

(a^2-b^2)

= (a+b)(a-b)

= (±1.5) * (0.9) [where, a-b=0.9,a+b=±1.5]

= ± 1.35

Hence, the value of (a+b) is ± 1.5 and (a^2-b^2) is ±1.35.

Answered by hukam0685
37

Step-by-step explanation:

Given that: If

a - b = 0.9 \\  \\ ab = 0.36 \\  \\

To find:

ab \: and \:  {a}^{2}  -  {b}^{2}  \\  \\

Solution: First of all, square both side

 {(a - b)}^{2}  = 0.9 \times 0.9 \\  \\  {a}^{2}  +  {b}^{2}  - 2ab = 0.81 \\  \\ now \: to \: convert \: LHS \: to \: ( {a + b)}^{2}  \\  \\ add \: and \: subtract \: 2ab \: in \: LHS \\  \\ {a}^{2}  +  {b}^{2}  - 2ab  - 2ab + 2ab= 0.81 \\ \\ {a}^{2}  +  {b}^{2}   + 2ab - 4ab = 0.81 \\ \\  {(a + b)}^{2}  - 4ab = 0.81 \\  \\ {(a + b)}^{2}  =  4ab +  0.81 \\  \\ {(a + b)}^{2}  =  4(0.36) +  0.81 \\  \\ {(a + b)}^{2}  =  2.25 \\  \\ take  \: square \: root \: both \: sides \: \\ (a + b) =  ± 1.5 \\  \\

Now,to find

 {a}^{2}  -  {b}^{2}  \\  \\ remember \: the \: identity \\  \\ (a - b)(a + b) = {a}^{2}  -  {b}^{2} \\  \\ we \: have \: both \: (a - b) \: and \: (a + b) \\  \\

Case 1: (a+b) = +1.5

 {a}^{2}  -  {b}^{2}  = (a + b)(a - b) \\  =  1.5 \times 0.9 \\  \\  {a}^{2}  -  {b}^{2}= 1.35 \\  \\

Case 2: (a+b) = -1.5

{a}^{2}  -  {b}^{2} =  - 1.5 \times 0.9 \\  =  - 1.35 \\  \\

Hope it helps you.

Similar questions