if a+b=1 then find the value of a3+b3+3ab
Answers
Answered by
1
Given:
a + b = 1 ——> 1
We know that
(a + b)^3 = a^3 + b^3 + 3ab(a + b)
Rearranging the above,
a^3 + b^3 + 3ab(a + b) = (a + b)^3 ——> 2
Substituting 1 in 2,
a^3 + b^3 + 3ab(1) = (1)^3
a^3 + b^3 + 3ab = 1 ——> Answer
a + b = 1 ——> 1
We know that
(a + b)^3 = a^3 + b^3 + 3ab(a + b)
Rearranging the above,
a^3 + b^3 + 3ab(a + b) = (a + b)^3 ——> 2
Substituting 1 in 2,
a^3 + b^3 + 3ab(1) = (1)^3
a^3 + b^3 + 3ab = 1 ——> Answer
Similar questions