Math, asked by rekhasharma96, 1 year ago

if a+b=10,a^2+b^2=50,find a^3+b^3​

Answers

Answered by ihrishi
3

Step-by-step explanation:

Given: a + b = 10,

  {a}^{2}  +  {b}^{2}  = 50 \\ \\   \because {(a + b)}^{2}   =  {a}^{2} +  {b}^{2} + 2ab \\  \therefore \: ( {10)}^{2}   = 50 + 2ab \\ 100 - 50 = 2ab \\ 50 = 2ab \\ ab =  \frac{50}{2}   = 25\\  \\ \\ now \:  \\  ( {a + b})^{3}  =  {a}^{3}  + {b}^{3} + 3ab(a + b) \\ ( {10})^{3} =  {a}^{3}  + {b}^{3} + 3 \times 25 \times 10 \\ 1000 =  {a}^{3}  + {b}^{3} + 750 \\  {a}^{3}  + {b}^{3} = 1000 - 750  \\  {a}^{3}  + {b}^{3} = 250

Similar questions