if a+b=10,ab=21.then a cube+b cube=
Answers
Answered by
39
the general formula is
a^3+-b^3=(a+-b)(a^2-+ab+b^2)
in our case will be
a^3+b^3=(a+b)(a^2-ab+b^2)
till now we know only a+b=10 and ab=21
So we have
10(a^2+b^2-21)=
We need to find out a^2+b^2
but a+b=10 /()^2=
a^2+2ab+b^2=100
a^2+2*21+b^2=100
a^2+b^2=100-42
a^2+b^2=58
so
10(58-21)=
10*37=370
Answered by
28
a+b=10
ab=21
a=21/b
21/b+b=10
=10
[tex]21+b ^{2} =10b
b ^{2} -10b+21=0
b ^{2} -3b-7b+21=0
b(b-3)-7(b-3)=0
b=3,7
substitute b=3,7 in ab=21
3a=21
a=7
when b=3 then a=7
7a=21
a=3
when b=7 then a=3[/tex]
so,
ab=21
a=21/b
21/b+b=10
=10
[tex]21+b ^{2} =10b
b ^{2} -10b+21=0
b ^{2} -3b-7b+21=0
b(b-3)-7(b-3)=0
b=3,7
substitute b=3,7 in ab=21
3a=21
a=7
when b=3 then a=7
7a=21
a=3
when b=7 then a=3[/tex]
so,
Similar questions