If a+b=10 and ab=16, find the value of a²-ab+b² and a²+ab+b²
Answers
Answered by
16
gn. a+b=10 and ab=16
so [a+b]^{2}=100 = a^{2} + b^{2} +2ab
u need a^{2} +b^{2} -ab = [a+b]^{2}-3ab = 100-48 = 52
||ly a^{2} +b^{2} +ab = [a+b]^{2}-ab = 100-16 = 84
so [a+b]^{2}=100 = a^{2} + b^{2} +2ab
u need a^{2} +b^{2} -ab = [a+b]^{2}-3ab = 100-48 = 52
||ly a^{2} +b^{2} +ab = [a+b]^{2}-ab = 100-16 = 84
Answered by
21
given that:
a+b = 10 and ab = 16
a^2 - ab +b^2
= (a+b)^2 -3ab
by putting the values
= (10)^2 -3 (16)
= 100- 48
=52
so, a^2 -ab +b^2 = 52
a^2 +ab +b^2
= (a+b)^2 - ab
again, by putting the values
= (10)^2 - 16
=100-16
=84
so, a^2 +ab +b^2 = 84
a+b = 10 and ab = 16
a^2 - ab +b^2
= (a+b)^2 -3ab
by putting the values
= (10)^2 -3 (16)
= 100- 48
=52
so, a^2 -ab +b^2 = 52
a^2 +ab +b^2
= (a+b)^2 - ab
again, by putting the values
= (10)^2 - 16
=100-16
=84
so, a^2 +ab +b^2 = 84
Similar questions