if a+b=12and ab =27 find the value of a³+b³.
Answers
Answered by
35
Answer:-
a³ + b³ = 756
Given :-
a + b = 12
ab = 27
To find :-
The value of a³ + b³.
Solution:-
For solving this kind of question we need a suitable identity.
(a³ + b³) = (a + b) (a² + b² -ab)
Now, put the given value,
(a + b)² = a² + b² + 2ab
→(12)² = a² + b² + 2 × 27
→144 = a² + b² + 54
→a² + b² = 144 - 54
→a² + b² = 90
→(a³ + b³) = 12 ( 90 - 27)
→(a³ + b³) = 12 × 63
→a³ + b³ = 756
Some more identities:-
(a³ - b³) = (a - b) (a² + b² + ab)
( a + b)³ = a³ + b³ + 3ab ( a + b)
( a+ b)³ = a³ - b³ - 3ab ( a - b)
Answered by
25
GIVEN :
a + b = 12
ab = 27
TO FIND :
a³ + b³
SOLUTION:
= a³ + b³
We know that,
a³ + b³ = (a + b)³ - 3ab (a + b)
= (12)³ - 3(27) (12)
= 1728 - 81 (12)
= 1728 - 972
= 756
Therefore, the value of a³ + b³ = 756.
Similar questions