Math, asked by bharatnavsagre, 3 months ago

if A:B=2:3,B:C=5:6 find AC​

Answers

Answered by Anonymous
40

\sf{Answer}

Given :-

  • Ratio of A: B = 2 :3
  • B :C = 5 :6

To find :-

  • A:C value

Solution :-

In A : B and B :C "B" is common So, LCM of 3, 5 is 15

Multiply A : B with 5

Multiply B : C with 3

A : B = (2 : 3) 5

A : B = 10 : 15

B : C = ( 5: 6 ) 3

B : C = 15 : 18

Now , the ratio of B is same

A : B : B : C = 10 : 15 : 15 : 18

A : B : C = 10 : 15 : 18

A :C = 10:18 We can simplify

A : C = 5 : 9

So, ratio of A: C IS 5:9

Answered by llMrIncrediblell
414

\underline{\underline{\sf{\maltese\:\:Given}}}

  • A : B = 2:3
  • B : C = 5:6

\underline{\underline{\sf{\maltese\:\:To\: Find}}}

  • value of A : C

\underline{\underline{\sf{\maltese\:Calculations \:}}}

So firstly we can say that :-

 \longrightarrow \:  \frac{a}{b}  =  \frac{2}{3}

\longrightarrow \:  \frac{1}{b} \:  =  \frac{2}{3a}

Thus,

\longrightarrow \:  \purple{b =  \frac{3a}{2} } \:  \:  \:  \:  \:  \:  \: ..eq(1)

Now, as given :-

\longrightarrow \:  \frac{b}{c}  =  \frac{5}{6}

Thus,

\longrightarrow \: \pink{b =  \frac{5c}{6}  }\:  \:  \:  \:  \:  \:  \: ..eq(2)

Now comparing both the equation with LHS being 'B'

Therefore,

\longrightarrow \:  \frac{3a}{2}  =  \frac{5c}{6}

\longrightarrow \:  \frac{3a}{ \cancel2}  =  \frac{5c}{ \cancel6}

\longrightarrow \:  {3a} =  \frac{5c}{3}

by cross multiplying, we get :-

\longrightarrow \: a =  \frac{5c}{9}

\longrightarrow \: \red{ \frac{a}{c}  =  \frac{5}{9}}

Hence, the value of A : C is 5 : 9.

Similar questions