Math, asked by jnanadrigmailcom, 2 months ago

if A + B = 225° then (1 + cot A)/cot A × (1 + cot B)/cot B = ?​

Answers

Answered by mathdude500
3

\Large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:A + B = 225 \degree

can be rewritten as

\rm :\longmapsto\:tan(A + B )= tan225 \degree

\rm :\longmapsto\:\dfrac{tanA  + tanB}{1 - tanAtanB} = tan(90 \degree \times 2 + 45 \degree)

\rm :\longmapsto\:\dfrac{tanA  + tanB}{1 - tanAtanB} = tan 45 \degree

\rm :\longmapsto\:\dfrac{tanA  + tanB}{1 - tanAtanB} = 1

\rm :\longmapsto\:tanA + tanB = 1 - tanAtanB

\rm :\longmapsto\:tanA + tanB  + tanAtanB = 1

On adding 1 on both sides, we get

\rm :\longmapsto\:1 + tanA + tanB  + tanAtanB = 1 + 1

\rm :\longmapsto\:(1 + tanA) + tanB(1+ tanA) = 2

\rm :\longmapsto\:(1 + tanA)(1+ tanB) = 2

\rm :\longmapsto\:\bigg(1 + \dfrac{1}{cotA} \bigg) \bigg(1 + \dfrac{1}{cotB}  \bigg) = 2

\bf :\longmapsto\:\bigg(\dfrac{cotA + 1}{cotA} \bigg) \bigg(\dfrac{cotB + 1}{cotB}  \bigg) = 2

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\underbrace{\boxed{ \tt{tan(x + y) =  \frac{tanx + tany}{1 - tanxtany} }}}

\underbrace{\boxed{ \tt{tan(180 \degree + x) = tanx}}}

\underbrace{\boxed{ \tt{tanx =  \frac{1}{cotx} }}}

Additional Information :-

\underbrace{\boxed{ \tt{sin(x + y) = sinxcosy + sinycosx}}}

\underbrace{\boxed{ \tt{sin(x  -  y) = sinxcosy  -  sinycosx}}}

\underbrace{\boxed{ \tt{cos(x + y) = cosxcosy - sinxsiny}}}

\underbrace{\boxed{ \tt{cos(x  -  y) = cosxcosy  +  sinxsiny}}}

\underbrace{\boxed{ \tt{tan(x  -  y) =  \frac{tanx  -  tany}{1  +  tanxtany} }}}

Similar questions