If a+b+2c = 0 prove that a3+b+8c3 = 6abc
Answers
Answered by
26
Question should be:
- If a+b+2c = 0 prove that a³+b³+8c³ = 6abc
GIVEN:
- a+b+2c = 0
TO PROVE:
- a³+b³+8c³ = 6abc
SOLUTION:
=> a+b+2c = 0
=> a+b = (-2c) .....(i)
Cubing both sides we get;
=> (a+b)³ = (-2c)³
=> a³+b³+3ab(a+b) = -8c³
Putting (a+b) = -2c from (i)
=> a³+b³+3ab(-2c) = -8c³
=> a³+b³-6abc = -8c³
=> a³+b³+8c³ = 6ab
PROVED:
NOTE:
Some important formulas:
(a+b)² = a²+b²+2ab
(a-b)² = a²+b²-2ab
(a+b)(a-b) = a²-b²
(a+b)³ = a³+b³+3ab(a+b)
(a-b)³ = a³-b³-3ab(a-b)
a³+b³ = (a+b)(a²+b²-ab)
a³-b³ = (a-b)(a²+b²+ab)
(a+b)² = (a-b)²+4ab
(a-b)² = (a+b)²-4ab
Similar questions
Math,
5 months ago
English,
5 months ago
Social Sciences,
5 months ago
Math,
10 months ago
India Languages,
10 months ago
Math,
1 year ago
Math,
1 year ago