If A-b =3and ab=10then find a2+b2
Answers
Answered by
3
Hello friend
_____________________________________________________________
Given that , A - b = 3 and ab = 10
we know that , ( a - b )² = a² - 2ab + b² Therefore , a² + b² = ( a - b )² + 2ab
a² + b² = 3² + 2 x 10
a² + b² = 9 + 20
a² + b² = 29
_____________________________________________________________
Hope it will help u
_____________________________________________________________
Given that , A - b = 3 and ab = 10
we know that , ( a - b )² = a² - 2ab + b² Therefore , a² + b² = ( a - b )² + 2ab
a² + b² = 3² + 2 x 10
a² + b² = 9 + 20
a² + b² = 29
_____________________________________________________________
Hope it will help u
DarkUnix:
Question didn't specify it being the power of the 'a'.
Answered by
0
Given,
[tex]a - b = 3 ........... (1) \\ and, a\cdot b = 10 ....... (2)[/tex]
From here, we can write
Now putting the value of 'a' from (3) into (2),
[tex]\implies (b + 3)\cdot b = 10 \\ \implies b^2 + 3b - 10 = 0 \\ \implies b^2 + 5b - 2b - 10 = 0 \\ \implies b(b + 5) - 2 (b + 5) = 0 \\ \implies (b - 2) \cdot (b+5) = 0 \implies b = 2, -5 \\ \\ and, \therefore b = 2 \text{ and from equation (1) } a = 5 \\ \implies a^2 + b^2 = 5^2 + 2^2 = 25 + 4 = 29[/tex]
Therefore, answer is 29.
[tex]a - b = 3 ........... (1) \\ and, a\cdot b = 10 ....... (2)[/tex]
From here, we can write
Now putting the value of 'a' from (3) into (2),
[tex]\implies (b + 3)\cdot b = 10 \\ \implies b^2 + 3b - 10 = 0 \\ \implies b^2 + 5b - 2b - 10 = 0 \\ \implies b(b + 5) - 2 (b + 5) = 0 \\ \implies (b - 2) \cdot (b+5) = 0 \implies b = 2, -5 \\ \\ and, \therefore b = 2 \text{ and from equation (1) } a = 5 \\ \implies a^2 + b^2 = 5^2 + 2^2 = 25 + 4 = 29[/tex]
Therefore, answer is 29.
Similar questions