If a-b=π÷4 , then find (1+tanA) (1-tanB)
Answers
Answered by
22
Tan(A-B)= tan pi/4 = 1
So [ tan A - tan B] = [ 1 + tan A tan B ]
So LHS = tan A - tan B + 1 - tan A tan B
= 1+ tan A tan B + 1 - tan A tan B
= 2
So [ tan A - tan B] = [ 1 + tan A tan B ]
So LHS = tan A - tan B + 1 - tan A tan B
= 1+ tan A tan B + 1 - tan A tan B
= 2
kvnmurty:
Click on the thanks button above
Answered by
10
Here ,
a - b = π/4
take both sides tan
tan(a - b) = tanπ/4
(tana - tanb)/(1 + tana.tanb) = 1
tana + tanb = 1 +tana.tanb
tana +tanb +tana.tanb + 1 = 2
(tana +1)(tanb +1) = 2
a - b = π/4
take both sides tan
tan(a - b) = tanπ/4
(tana - tanb)/(1 + tana.tanb) = 1
tana + tanb = 1 +tana.tanb
tana +tanb +tana.tanb + 1 = 2
(tana +1)(tanb +1) = 2
Similar questions