If A+B=45 prove Then (cot A-1) (cot B-1)=2
Answers
Answered by
38
A + B = 45°
take tan both sides
tan (A + B) = tan45°
{tanA + tanB } /(1 - tanA.tanB) = 1
tanA + tanB = 1 - tanA.tanB
1/cotA + 1/cotB = 1 - 1/cotA.cotB
(cotA + cotB ) = cotA.cotB - 1
cotA + cotB - cotA.cotB + 1 =0
cotA + cotB -cotA.cotB -1 = -2
cotA ( 1 - cotB ) + (cotB - 1) = - 2
(cotA - 1 )(1 - cotB ) = -2
(cotA -1 )( cotB -1 ) = 2
hence proved
take tan both sides
tan (A + B) = tan45°
{tanA + tanB } /(1 - tanA.tanB) = 1
tanA + tanB = 1 - tanA.tanB
1/cotA + 1/cotB = 1 - 1/cotA.cotB
(cotA + cotB ) = cotA.cotB - 1
cotA + cotB - cotA.cotB + 1 =0
cotA + cotB -cotA.cotB -1 = -2
cotA ( 1 - cotB ) + (cotB - 1) = - 2
(cotA - 1 )(1 - cotB ) = -2
(cotA -1 )( cotB -1 ) = 2
hence proved
Answered by
10
Answer:
A + B = 45°
taking tan on both sides
,
tan (A + B) = tan45°
{tanA + tanB } /(1 - tanA.tanB) = 1
tanA + tanB = 1 - tanA.tanB
1/cotA + 1/cotB = 1 - 1/cotA.cotB
(cotA + cotB ) = cotA.cotB - 1
cotA + cotB - cotA.cotB + 1 =0
cotA + cotB -cotA.cotB -1 = -2
cotA ( 1 - cotB ) + (cotB - 1) = - 2
(cotA - 1 )(1 - cotB ) = -2
(cotA -1 )( cotB -1 ) = 2
Hence Proved
HOPE IT HELPED YOU
.
.
.
.
.
PLEASE MARK AS BRAINLIEST!!!!
Similar questions