If A+B=45 , then prove that (1+tanA) (1+tanB)=2
Answers
Answered by
0
Answer:
Given A+B=45
{Take tan on both the sides }
tan(A+B) = tan45
tanA+tanB/1- tanA tanB = 1
tanA+tanB=1-tanA.tanB
tanA+tanB+tanA.tanB=1
adding "1" on both sides
1+ tanA+tanB+tanA.tanB=1+1
(1 + tanA)+tanB(1+tanA).=2
(1+tanA)(1+tanB)=2 Hence proved .
Answered by
1
Given:-
- A + B = 45°
Apply tan on both sides.
⟶ tan (A + B) = tan 45°
⟶ tan (A + B) = (tan A + tan B) / 1 - tan A tan B
⟶ tan 45° = 1
So,
⟶ tan A + tan B / 1 - tan A tan B = 1
⟶ tan A + tan B = 1 - tan A tan B
⟶ tan A + tan B + tan A tan B = 1
Adding 1 on both sides we get,
⟶ tan A + tan A tan B + tan B + 1 = 1 + 1
⟶ tan A ( 1 + tan B) + 1 (1 + tan B) = 2
⟶ (1 + tan B)(1 + tan A) = 2
⟶ (1 + tan A)(1 + tan B) = 2
Hence, Proved !
___________________
Additional Information:-
- sin (A + B) = sin A cos B + cos A sin B
- cos (A + B) = cos A cos B - sin A sin B.
- sin (A - B) = sin A cos B - cos A sin B
- cos (A - B) = cos A cos B + sin A sin B.
- sin 2A = 2 sin A cos A
- cos 2A = cos² A - sin² A.
Similar questions