English, asked by ramapuramobulesu123, 6 months ago

If A+B= 45° and none of A and B is an odd multiple of pie/2 prove that 1
+ tan A)(1+tan B) = 2 and hence deduce that tan 22 1/2= √2-1​

Answers

Answered by Swarup1998
17

Given:

  • A+B=45^{\circ}
  • None of A and B is an odd multiple of \frac{\pi}{2}.

To prove:

  • (1+tanA)(1+tanB)=2
  • tan22\frac{1}{2}^{\circ}=\sqrt{2}-1

Proof:

Here, A+B=45^{\circ}

Taking tangent to both sides, we get

\quad tan(A+B)=tan45^{\circ}

\Rightarrow \frac{tanA+tanB}{1-tanA\:tanB}=1

\Rightarrow tanA+tanB=1-tanA\:tanB

\Rightarrow 1+tanA+tanB+tanA\:tanB=2

\Rightarrow 1(1+tanA)+tanB(1+tanA)=2

\Rightarrow \boxed{(1+tanA)(1+tanB)=2}

Thus proved.

Since 22\frac{1}{2}^{\circ}+22\frac{1}{2}^{\circ}=45^{\circ}, we take A=B where A=22\frac{1}{2}^{\circ}.

\Rightarrow (1+tan22\frac{1}{2}^{\circ})^{2}=2

\Rightarrow 1+tan22\frac{1}{2}^{\circ}=\sqrt{2}

\Rightarrow \boxed{tan22\frac{1}{2}^{\circ}=\sqrt{2}-1}

Thus proved.

Similar questions