Math, asked by Anonymous, 9 months ago

If A + B = 45° , find (1 + tan A)
(1 + tab B).​

Answers

Answered by Nirbhay0987
2

Answer:

A+B=45

tan(A+B)= tan45

tanA+tanB/1- tanAtanB=1

 tanA+ tanB= 1-tanAtanB 

tanA +tanB+ tanAtanB=1

 1+tanA +tanB+ tanAtanB=1+1  

        (adding 1 on both sides)

1(1+tanA) +tanB(1+tanA) =2

 (1+tanA)(1+tanB)=2

hence proved

Answered by Anonymous
16

Answer:

\huge\bf\underline\blue{AnSweR:}

 \tan(a + b) =  \tan45 = 1

  \frac{ \tan \: a +  \tan \:  b  }{1 -  \tan \: a \:  \tan \: b }  = 1

 \tan \: a +  \tan \: b +  \tan \: a \tan \: b = 1

1 +  \tan \: a +  \tan \: b +  \tan \: a \tan \: b = 1 + 1

\implies\bf\green{(1 + tan A)(1+ tan B) = 2}

Similar questions