Math, asked by Tithi11, 1 year ago

if a+ b = 45° prove that (1+ tan a) ( 1+ tan b) =2

Answers

Answered by MaheswariS
20

\textbf{Given:}

A+B=45^{\circ}

\textbf{To prove:}

(1+\tan{A})(1+\tan{B})=2

\textbf{Solution:}

\text{Consider,}

A+B=45^{\circ}

\tan(A+B)=\tan{45^{\circ}}

\dfrac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}=1

\tan{A}+\tan{B}=1-\tan{A}\tan{B}

\tan{A}+\tan{B}+\tan{A}\tan{B}=1

\text{Add 1 on bothsides, we get}

\tan{A}+\tan{B}+\tan{A}\tan{B}+1=2

\text{Factorize the L.H.S}

\tan{A}+\tan{A}\tan{B}+1+\tan{B}=2

\tan{A}(1+\tan{B})+1(1+\tan{B})=2

(\tan{A}+1)(1+\tan{B})=2

\implies\boxed{\bf(1+\tan{A})(1+\tan{B})=2}

Find more:

If A+B+C=180, sinA-sinB+sinC=

https://brainly.in/question/3454866#

A+B+C=360 cot A/4 + cot B/4 + cot C/4=k cot A/4 cot B/4 cot C/4 then find k

https://brainly.in/question/6683676

Similar questions