If A = B = 45°, show that :
(i) sin (A - B) = sin A cos B - cos A sin B.
Answers
Answered by
1
Step-by-step explanation:
given A = B = 45°
sin (A - B) = sin A cos B - cos A sin B.
sin(45-45)=sin45cos45-cos45sin45
sin0=1/√2(1/√2)-1/√2(1/√2)
0=1/2-1/2
0=0
LHS=RHS
Hence proved
please mark it as brainliest.
Answered by
1
Answer:
A-B=45-45=0
SINA=SINB=SIN45=1/√2
COSA=COSB=COS45=1/√2
SINA.COSB=1/√2*1/√2=1/2
SINB.COSA=1/√2*1/√2=1/2
THEREFORE,SINA.COSB-COSA.SINA=1/2-1/2=0
SIN(A-B)=SIN(0)=0
AS LHS=RHS HENCE PROVED
Step-by-step explanation:
Similar questions