if A+B = 45° then proove that (1+tanA)(1+tanB)=2
Answers
Answered by
3
Here A+B=45
tan(A+B)=tan45
tanA+tanB/1-tanA.tanB=1
tanA+tanB=1-tanA×tanB
tanA+tanB+tanA×tanB=1
adding 1 to both sides
1+tanA+tanB+tanA×tanB=2
1(1+tanA)tanB(1+tanA)=2
(1+tanA)(1+tanB)=2
Hence proved
Similar questions