If a+b+6 and ab=8 then find the value of a^3+b^3 and a^2+b^2
Answers
Answered by
7
Answer:-
Given:
a + b = 6 -- equation (1).
ab = 8 -- equation (2).
We know that,
a² + b² = (a + b)² - 2ab
(a² + b² = a² + b² + 2ab - 2ab)
Hence,
→ a² + b² = (6)² - 2(8)
→ a² + b² = 36 - 16
→ a² + b² = 20
let , a² + b² = 20. is equation (3)
Now,
a³ + b³ = (a + b)(a² + b² - ab)
Putting the values from equation (1) , (2) , (3).
→ a³ + b³ = (6) (20 - 8)
→ a³ + b³ = 6(12)
→ a³ + b³ = 72.
Hence, a² + b² = 20 and a³ + b³ = 72.
Similar questions