Math, asked by BrainlyHelper, 1 year ago

If A = B = 60°, verify that
(i)cos (A − B) = cos A cos B + sin A sin B
(ii)sin (A − B) = sin A cos B − cos A sin B
(iii)tan(A-B)=\frac{tanA-tanB}{1+tanAtanB}

Answers

Answered by nikitasingh79
9

SOLUTION :

(i) Given : A = B = 60°

verify : Cos (A – B) = Cos A Cos B + Sin A Sin B

L.H.S = Cos (A – B)  

On Substituting  A = B = 60° in LHS

= cos (60° – 60°)  

= cos 0°

= 1

[cos 0°= 1]

L.H.S = 1

R.H.S  = Cos A Cos B + Sin A Sin B

On Substituting  A = B = 60° in RHS

= cos 60° cos 60° + sin 60° sin 60°

= cos² 60° + sin² 60°

= (½)² + (√3/2)²

[cos 60° = ½ , sin 60° = √3/2]

= (¼ ) + 3/4

= (1+3)/4

= 4/4 = 1

= 1  

RHS = 1

LHS = RHS  = 1

Hence, Cos (A – B) = Cos A Cos B + Sin A Sin B

(ii) Given : A = B = 60°

verify : sin (A − B) = sin A cos B − cos A sin B

L.H.S = sin (A − B)  

On Substituting  A = B = 60° in LHS

= sin (60° – 60°)  

= sin 0°

= 0

[sin 0°= 0]

L.H.S = 0

R.H.S  = sin A cos B − cos A sin B

On Substituting  A = B = 60° in RHS

= sin 60° cos 60° -  cos 60° sin 60°

= √3/2 × ½ -  ½ × √3/2

[cos 60° = ½ , sin 60° = √3/2]

= √3/4 - √3/4

= 0  

RHS = 0

LHS = RHS  = 0

Hence, sin (A − B) = sin A cos B − cos A sin B

(iii) Given : A = B = 60°

Verify : tan(A−B) = tan A −tanB / 1+ tanA tanB

LHS = tan(A−B)

On Substituting  A = B = 60° in LHS

= tan(60° − 60°)

= tan 0°  

= 0  

[ tan 0° = 0 ]

LHS = 0

RHS = tan A −tanB / 1+ tanA tanB

= tan 60° − tan 60° / 1+ tan 60° tan 60°

= 0 /1 + tan² 60°

= 0/ 1 + (√3)²

= 0/ 1 + 3

= 0 /4 = 0

= 0

RHS = 0

LHS = RHS = 0

Hence, tan(A−B) = tan A −tanB / 1+ tanA tanB

HOPE THIS ANSWER WILL HELP YOU…


Inflameroftheancient: Excellent Answer ma'am
Answered by nethranithu
1

hey there➡️



here ur answer which i wrote and attached for u❗



hope this helps u✅✔️✅✔️



be brainly❤️

Attachments:
Similar questions