If a+b=8, a^2+ b^2=40, then find the value of a^3+b^3
Answers
Answered by
0
two hundred and twenty four
Answered by
2
a + b = 8 ...(1)
a^2 + b^2 = 40 ... (2)
Multiplying equation (1) &(2), we get
(a+b)(a^2+b^2) = (8)(40)
a^3+ab^2+a^2b+b^3 = 320
so, a^3 + b^3 = 320 - ab^2 + a^2b
a^2 + b^2 = 40 ... (2)
Multiplying equation (1) &(2), we get
(a+b)(a^2+b^2) = (8)(40)
a^3+ab^2+a^2b+b^3 = 320
so, a^3 + b^3 = 320 - ab^2 + a^2b
Similar questions