If a+b=8, ab=15 and a²+b²=34 then find the value of a³+b³
Answers
Answered by
7
We know that,
(a+b)³ = a³ + b³ + 3ab (a+b)
(a+b) = 8
ab = 15
a² + b² = 34
(a+b)³ = a³ + b³ + 3ab (a+b)
➡ (8)³ = a³ + b³ + 3*15 (8)
➡ 512 = a³ + b³ + 360
➡ 512-360 = a³ + b³
➡ 152 = a³ + b³
= ³ + ³
(a+b)³ = a³ + b³ + 3ab (a+b)
(a+b) = 8
ab = 15
a² + b² = 34
(a+b)³ = a³ + b³ + 3ab (a+b)
➡ (8)³ = a³ + b³ + 3*15 (8)
➡ 512 = a³ + b³ + 360
➡ 512-360 = a³ + b³
➡ 152 = a³ + b³
= ³ + ³
Answered by
3
Given
a+b = 8
ab = 15
a^2 +b^2 = 34
we know that (a+b)^3 = a^3 +b^3 +3ab(a+b)
(a+b)^3 - 3ab(a+b) = a^3 +b^3
(8)^3 - 3(15)(8) = a^3 + b^3
512 - 360 = a^3 + b^3
152 = a^3 +b^3
a+b = 8
ab = 15
a^2 +b^2 = 34
we know that (a+b)^3 = a^3 +b^3 +3ab(a+b)
(a+b)^3 - 3ab(a+b) = a^3 +b^3
(8)^3 - 3(15)(8) = a^3 + b^3
512 - 360 = a^3 + b^3
152 = a^3 +b^3
Similar questions
Science,
7 months ago
Social Sciences,
7 months ago
Hindi,
7 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Science,
1 year ago