If a+b=8 and ab=6 then find the value of a^3 +b^3
Answers
Answered by
12
(a + b) = 8
Cube on both sides,
(a + b)³ = 8²
a³ + b³ + 3ab(a + b) = 8³
a³ + b³ + 3(6)(8) = 512
a³ + b³ + 144 = 512
a³ + b³ = 512 - 144
a³ + b³ = 368
Cube on both sides,
(a + b)³ = 8²
a³ + b³ + 3ab(a + b) = 8³
a³ + b³ + 3(6)(8) = 512
a³ + b³ + 144 = 512
a³ + b³ = 512 - 144
a³ + b³ = 368
Answered by
6
Hey !!!
given :- a + b = 8
ab = 6
a³ + b³ = ( a + b ) ( a² + b² - ab )
=> {( a + b ) (a + b ) ²- 2ab - ab }
=> { (a + b ) ( a + b)²- 3ab ) }
=> 8 { ( 8)²- 3 × 6}
=> 8 { 64 - 18 }
=> 8 × 46
=> 368 Answer ✔
_______________________________
Hope it helps you !!!
@Rajukumar111
given :- a + b = 8
ab = 6
a³ + b³ = ( a + b ) ( a² + b² - ab )
=> {( a + b ) (a + b ) ²- 2ab - ab }
=> { (a + b ) ( a + b)²- 3ab ) }
=> 8 { ( 8)²- 3 × 6}
=> 8 { 64 - 18 }
=> 8 × 46
=> 368 Answer ✔
_______________________________
Hope it helps you !!!
@Rajukumar111
Similar questions