Math, asked by rishika4181, 5 months ago

: If (a + b) = 9 and ab=14, find the value of a’ -6%.
anmel​

Answers

Answered by AestheticSoul
7

Appropriate Question

• If (a + b) = 9 and ab=14, find the value of a - b.

Given

  • (a + b) = 9
  • ab = 14

To find

  • (a - b)

Solution

Identity to be used -

\red{\bigstar}  \large  {\boxed{\bf {\green{(a + b)^2 = a^2 + b^2 + 2ab}}}}

\implies\sf{(a + b)^2 = a^2 + b^2 + 2ab}

 \implies\sf{(9)^2 =  a^2 + b^2 + 2 \times 14}

 \implies\sf{81 = a^2 + b^2 + 28}

: \implies\sf{81 - 28 = a^2 + b^2}

: \implies\sf{53= a^2 + b^2}

\red{\bigstar} \large  {\boxed{\bf {\green{a^2 + b^2 = 53}}}}

Identity to be used -

\green{\bigstar} \large  {\boxed{\bf {\blue{(a - b)^2 = a^2 + b^2 - 2ab}}}}

: \implies \sf{{(a - b)^2 =53 - 2 \times 14}}

: \implies \sf{{(a - b)^2 =53 - 28}}

: \implies \sf{{(a - b)^2 =25}}

: \implies \sf{{a - b = \sqrt{25} }}

: \implies \sf{{a - b = \sqrt{5 \times 5} }}

: \implies \sf{{a - b = 5 }}

\red{\bigstar} \large  {\boxed{\bf {\pink{a - b = 5}}}}

Similar questions
Math, 2 months ago