Math, asked by ranjitsinghsandhu1, 1 year ago

if a+b=9 and ab=20 find a3 +b3​

Answers

Answered by PegasusPurpose
2

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \huge\mathcal{\bf{\underline{\underline{\huge\mathcal{Answer}}}}}

\underline{\large\mathcal\red{solution}}

a+b=9\:\:\:\:\: and \:\:\:\:\;ab=20

now......

a {}^{2}  + b {}^{2}  = (a + b) {}^{2}  - 2ab \\  =  > a {}^{2} + b {}^{2}   = 9 {}^{2}  - 2(20) \\  =  > a {}^{2}  + b {}^{2}  = 41

therefore......

a {}^{3}  + b {}^{3}  = (a + b)(a {}^{2}  + b {}^{2}  - ab) \\  =  > a {}^{3}  + b {}^{3}  = (9)(41 - 20) \\  =  > a {}^{3}  + b {}^{3}  =18 9

\large\mathcal{hope\: this \: helps \:you......}

Answered by AKtechnicalpoint
1

SOLUTION:

Given,

  • a+b=9
  • ab=20

Find,

  • a³+b³=?

So,

(a+b)³ = a³+b³+3ab(a+b)

(9)³ = a³+b³+3×20(9)

729 = a³+b³+60(9)

729 = a³+b³+540

a³+b³ = 729-540

a³+b³ = 189.

Similar questions