Math, asked by kanishikabhatia1303, 1 year ago

if A+B = 90 and tan A = \frac{3}{4} , find the value of cot B

Answers

Answered by Saafir
0

Answer:

cotB=\frac{3}{4}

Step-by-step explanation:

A+B=90

A=90-B ------------1

Tan A=\frac{3}{4}

Tan (90-B)=\frac{3}{4}

Cot B=\frac{3}{4}

Answered by Anonymous
3

Answer:

\large\bold\red{\frac{3}{4}}

Step-by-step explanation:

Given,

A + B = 90

=> tan ( A + B ) = tan 90

 =  >  \frac{  \tan(A)  + \tan( B) }{1 -  \tan(A) \tan( B )  }  =  \frac{1}{0}  \\  \\  =  >   1 - \tan( A ) \tan( B)  = 0 \\  \\  =  >  \tan( A )  \tan( B )  = 1

But,

it is given that,

tan A = \frac{3}{4}

Thus,

putting the values,

we get,

 =  >  \frac{3}{4}  \times  \tan( B )  = 1 \\  \\  =  >  \tan( B )  =  \frac{4}{3}

But,

we know that,

 \tan(x)  =  \frac{1}{ \cot(x) }

Hence,

 \bold{ \cot( B )  =  \frac{3}{4} }

Similar questions