if A+B=90° prove (cosA + cosB)²=1+2cosA.sinA
Answers
Step-by-step explanation:
we have that,
A+B = 90°
B = 90°-A
proof--
LHS : ( cosA + cosB )^2
= [ cosA + cos(90-A) ]^2
= ( cosA + sinA )^2
= cos^2A + 2cosA.sinA +sin^2A
= sin^2A + cos^2A + 2cosA.sinA
= 1+2cosA.sinA
Therefore,LHS = RHS (proved)
Answer:
As given below
Step-by-step explanation:
Given that
A + B = 90° from this we can write B = 90°- A
here we need to prove (cos A + cos B)²= 1 + 2 cos A.sin A)
take LHS part
⇒ [ cos A + cos B ]²
⇒ [ cos A + cos (90°-A) ]² [ apply B = 90°- A ]
⇒ [ cos A + sin A ]² [ cos (90-θ) = sin θ ]
⇒ cos² A + sin² A + 2 cos A sin A [ from (a+b)² = a² + b² + 2 ab ]
⇒ 1 + 2 cos A sin A [ We know that cos² θ + sin² θ = 1 ]
⇒ LHS = RHS
⇒ hence it is proved that (cos A + cos B)²= 1 + 2 cos A.sin A)