If A + B = 90°, then prove that
tan A tan B+tan A cot B sin? B
sin A sec B
cos? A
=tan A.
Answers
Answer:
A + B = 90° => A = 90 - B
A + B = 90° => A = 90 - BSo Tan A = Cot (90 - A) = Cot B
A + B = 90° => A = 90 - BSo Tan A = Cot (90 - A) = Cot BSo Tan B = Cot (90 - B) = Cot A
A + B = 90° => A = 90 - BSo Tan A = Cot (90 - A) = Cot BSo Tan B = Cot (90 - B) = Cot ASecB = Cosec (90 -B) = Cosec A
A + B = 90° => A = 90 - BSo Tan A = Cot (90 - A) = Cot BSo Tan B = Cot (90 - B) = Cot ASecB = Cosec (90 -B) = Cosec ACosA = Sin (90 -A) = Sin B
A + B = 90° => A = 90 - BSo Tan A = Cot (90 - A) = Cot BSo Tan B = Cot (90 - B) = Cot ASecB = Cosec (90 -B) = Cosec ACosA = Sin (90 -A) = Sin Bsubstitute these in the LHS,
A + B = 90° => A = 90 - BSo Tan A = Cot (90 - A) = Cot BSo Tan B = Cot (90 - B) = Cot ASecB = Cosec (90 -B) = Cosec ACosA = Sin (90 -A) = Sin Bsubstitute these in the LHS,TanA\ TanB+\frac{TanA\ CotB}{SinA \ SecB}-\frac{Sin^2B}{Cos^2A}\\\\=TanA\ CotA + \frac{TanA\ TanA}{SinA\ CosecA}-\frac{Sin^2B}{Sin^2B}\\\\=1+Tan^2A - 1=Tan^2A
Answer:
Some relations you should know:
If A+B=90°, then:
→ tanB = cotA
→ tanA = cotB
→ sinB = cosA
→ sinA = cosB
It's not coming tanA.