If A + B, A are acute angles such that sin (A + B) = and tan A = then find the value of cos B.
Answers
Answered by
16
given, A + B, A are acute angles such that sin (A + B) = and tan A = .
tanA = 3/4 = p/b
so, p = 3 and b = 4
then, h = √(p²+b²) = √(3² + 4²) = 5
sinA = 3/5 and cosA = 4/5
sin(A + B) = 24/25
we know, sin(X + Y) = sinX. cosY + cosX . sinY
so, sinA. cosB + cosA. sinB = 24/25
3/5 × cosB + 4/5 × sinB = 24/25
3cosB + 4sinB = 24/5
15cosB + 20sinB = 24
dividing by cosB both sides,
15 + 20tanB = 24secB
squaring both sides,
225 + 400tan²B + 2600tanB= 576sec²B
we know, sec²x = 1 + tan²x
so, 225 + 400tan²B + 600tanB = 576 + 576tan²B
176tan²B - 600tanB + 576 - 225 = 0
176tan²B - 600tanB + 351 = 0
tanB = 3/4 , 117/44
cosB = 4/5 , 44/125
tanA = 3/4 = p/b
so, p = 3 and b = 4
then, h = √(p²+b²) = √(3² + 4²) = 5
sinA = 3/5 and cosA = 4/5
sin(A + B) = 24/25
we know, sin(X + Y) = sinX. cosY + cosX . sinY
so, sinA. cosB + cosA. sinB = 24/25
3/5 × cosB + 4/5 × sinB = 24/25
3cosB + 4sinB = 24/5
15cosB + 20sinB = 24
dividing by cosB both sides,
15 + 20tanB = 24secB
squaring both sides,
225 + 400tan²B + 2600tanB= 576sec²B
we know, sec²x = 1 + tan²x
so, 225 + 400tan²B + 600tanB = 576 + 576tan²B
176tan²B - 600tanB + 576 - 225 = 0
176tan²B - 600tanB + 351 = 0
tanB = 3/4 , 117/44
cosB = 4/5 , 44/125
Answered by
15
HELLO DEAR,
GIVEN:-
If A + B, A are acute angles such that sin (A + B) = and tan A =
tanA = 3/4 = p/b
h = √(9 + 16) = √25 = 5
sinA = 3/5 , cosA = 4/5
now, sin(A + B) = sinAcosB + cosAsinB = 24/25
=> (3/5)cosB + (4/5)sinB = 24/25
=> (3cosB + 4sinB) = 24/5
=> 15cosB + 20sinB = 24
divide by cosB on both side,
=> 15 + 20tanB = 24secB
on squaring both side,
=> 225 + 400tan²B + 600tanB = 576(1 + tan²B)
=> 400tan²B + 600tanB - 576tan²B = 576 - 225
=> -176tan²B + 600tanB = 351
=> 176tan²B - 600tanB + 351 = 0
=> 176tan²B - 468tanB - 132tanB + 351 = 0
=> (4tanB - 3) (44tanB - 117) = 0
=> tanB = 3/4 , tanB = 117/44
cosB = 4/5 , cosB = 44/125
I HOPE IT'S HELP YOU DEAR,
THANKS
GIVEN:-
If A + B, A are acute angles such that sin (A + B) = and tan A =
tanA = 3/4 = p/b
h = √(9 + 16) = √25 = 5
sinA = 3/5 , cosA = 4/5
now, sin(A + B) = sinAcosB + cosAsinB = 24/25
=> (3/5)cosB + (4/5)sinB = 24/25
=> (3cosB + 4sinB) = 24/5
=> 15cosB + 20sinB = 24
divide by cosB on both side,
=> 15 + 20tanB = 24secB
on squaring both side,
=> 225 + 400tan²B + 600tanB = 576(1 + tan²B)
=> 400tan²B + 600tanB - 576tan²B = 576 - 225
=> -176tan²B + 600tanB = 351
=> 176tan²B - 600tanB + 351 = 0
=> 176tan²B - 468tanB - 132tanB + 351 = 0
=> (4tanB - 3) (44tanB - 117) = 0
=> tanB = 3/4 , tanB = 117/44
cosB = 4/5 , cosB = 44/125
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions