Math, asked by anushka6455, 1 year ago

If a+b :✓ab = 4 : 1, then a : b= ?

Please try to solve it..​

Answers

Answered by Anonymous
24

Solution :-

As provided :-

 a + b : \sqrt{ab} = 4 : 1

Question asks the Ratio of

a : b = ?

Now let us write the ratio into fraction form .

\rightarrow \dfrac{a + b}{\sqrt{ab}} = 4

Now we will split the the fraction :-

\rightarrow \dfrac{a}{\sqrt{ab}} + \dfrac{a}{\sqrt{ab}} = 4

Now we will take the whole fraction under root.

\rightarrow \sqrt{\dfrac{a^2}{ab}} +  \sqrt{\dfrac{b^2}{ab}} = 4

 \rightarrow \sqrt{\dfrac{a}{b}} + \sqrt{\dfrac{b}{a}} = 4

Now let \bold{\sqrt{\frac{a}{b}} = x } then \bold{\sqrt{\frac{b}{a}} = \frac{1}{x}}

Now our Equation became :-

\rightarrow x + \dfrac{1}{x} = 4

 \rightarrow \dfrac{x^2 + 1}{x} = 4

 \rightarrow \dfrac{x^2 + 1}{x} \times x = 4 \times x

 \rightarrow x^2 + 1 = 4x

 \rightarrow x^2 - 4x + 1 = 0

Now we will solve the Quadratic Equation :-

x² - 4x + 1

Where

a = 1

b = -4

c = 1

Now as we have

 x = \dfrac{-b \pm \sqrt{ b^2 - 4ac}}{2a}

By putting the values :-

 \rightarrow x =  \dfrac{-(-4) \pm \sqrt{ (-4)^2 - 4(1)(1)}}{2(1)}

\rightarrow x = \dfrac{4 \pm \sqrt{ 16 - 4}}{2}

\rightarrow x = \dfrac{4 \pm \sqrt{ 12}}{2}

\rightarrow x = \dfrac{4\pm 2\sqrt{3}}{2}

\rightarrow x = 2 \pm \sqrt{3}

But as x is a square root , hence it can not be negative

 \rightarrow x = 2 + \sqrt{3}

Now as

 x = \sqrt{\dfrac{a}{b}} =  2 + \sqrt{3}

So the value of

\rightarrow \dfrac{a}{b} = \left( 2 + \sqrt{3}\right)^2

\rightarrow \dfrac{a}{b} = (2)^2 + 2(2)(\sqrt{3}) + (\sqrt{3})^2

\rightarrow \dfrac{a}{b} = 4 + 4\sqrt{3} + 3

\rightarrow \dfrac{a}{b} = 7 + 4 \sqrt{3}

Hence

 \huge{\boxed{\sf{a : b = 7 + 4 \sqrt{3} : 1 }}}

Answered by Anonymous
12

Step-by-step explanation:

that's helpful for you

Attachments:

Anonymous: There are some mistakes in the solution ... please consider them
Similar questions