Math, asked by chethahappy, 11 months ago

if (a+b) and (a-b) are the zeroes of polymonial p(x)=x2-6x+5, then find the value of a​

Answers

Answered by Sarthak1928
0

Given ;

p(x) = x² - 6x + 5

roots: --> α = (a+b)

-->β = (a-b)

Therefore we know that in a quadratic equation;

α \: + \: β =  \frac{ - b}{a}

When on substituting the given values

(a +  \: b) + (a - b) \:  =  \frac{ - ( - 6)}{1}

2a \:  = 6 \\ a \:  =  \:  \frac{6}{2}\\ a \:  =  \: 3

Hence a = 3

#answerwithquality

#BAL

Answered by sridevi15
0

Answer:

here a=1,b=-6,c=5

 \alpha + beta =   \frac{ - b}{a}  = 6  \\  \alpha×beta  =  \frac{c}{a}   = 5 \\

alpha+beta=(a+b)+(a-b)

alpha×beta=(a+b)(a-b)

(a+b)+(a-b)=6

2a=6

a=3

Similar questions