If a,b and c are positive real numbers such that
a(b+c)= 152,
b(c+a) =162 and c(a+b) =110 then abc =?
Answers
Answered by
10
given,
a(b+c)=152
b(c+a)=162
c(a+b)=110
multiply all three equation ,
abc(a+b)(b+c)(c+a)=152 x 162 x 110--------(1)
now we have required
(a+b)(b+c)(c+a)
now we use AM≥GM rule
(a+b), (b+c) ,(c+a) are positive integer
so,
{(a+b)+(b+c)+(c+a)}/3≥{(a+b)(b+c)(c+a)}^1/3
2(a+b+c)=3{(a+b)(b+c)(c+a)}^1/3
now take cube both side ,
8(a+b+c)^3=27(a+b)(b+c)(c+a)-----------(2)
but a, b, c are positive
this is also satisfied rule of AM≥GM
now,
(a+b+c)=3(abc)^1/3
take cube both sides
(a+b+c)^3=27abc
put this equation (2)
8 x 27abc =27(a+b)(b+c)(c+a)
8abc=(a+b)(b+c)(c+a)---------(3)
put equation (3) in (1)
abc x 8abc=162 x 152 x110
(abc)^2=162 x 152 x 110/8
(abc)^2=81 x 76 x 55
abc=√{81 x 76 x 55}
=581.8
a(b+c)=152
b(c+a)=162
c(a+b)=110
multiply all three equation ,
abc(a+b)(b+c)(c+a)=152 x 162 x 110--------(1)
now we have required
(a+b)(b+c)(c+a)
now we use AM≥GM rule
(a+b), (b+c) ,(c+a) are positive integer
so,
{(a+b)+(b+c)+(c+a)}/3≥{(a+b)(b+c)(c+a)}^1/3
2(a+b+c)=3{(a+b)(b+c)(c+a)}^1/3
now take cube both side ,
8(a+b+c)^3=27(a+b)(b+c)(c+a)-----------(2)
but a, b, c are positive
this is also satisfied rule of AM≥GM
now,
(a+b+c)=3(abc)^1/3
take cube both sides
(a+b+c)^3=27abc
put this equation (2)
8 x 27abc =27(a+b)(b+c)(c+a)
8abc=(a+b)(b+c)(c+a)---------(3)
put equation (3) in (1)
abc x 8abc=162 x 152 x110
(abc)^2=162 x 152 x 110/8
(abc)^2=81 x 76 x 55
abc=√{81 x 76 x 55}
=581.8
mysticd:
options are 1)672,2)688,3)704,4)720
Answered by
14
I think the third equation is typed wrong...
a(b+c) = 152 -- (1)
b(c+a) = 162 -- (2)
c(a+b) = 170 --- (3)
Add all the three equations: 2 (ab+bc+ ca) = 152+162+110 = 484
So ab + bc + ca = 242 -- (10)
(10) - (1) : bc = 90
(10) - (2) : ac = 80
(10) - (3) : ab = 72
Multiply these three: (abc)² = 90 *80*72
abc = 720
That is the option (d)
=================== with old given data:
a(b+c) = 152 -- (1)
b(c+a) = 162 -- (2)
c(a+b) = 110 --- (3)
(2) - (1): c (b-a) = 10 -- (4)
(3) / (4) : (a+b) / (b-a) = 11
=> 12 a = 10 b => b = 1.2 a -- (5)
Substitute (5) in (3): c * 2.2 a = 110 => c a = 50 --(6)
Substitute (6) in (1): a b = 152 -50 = 102 -- (7)
Substitute (7) in (2): b c = 60 ---(8)
(6) * (7) * (8): ca *ab * bc = (abc)² = 50*102*60
=> abc = 60 * √85
================== Another way:
Add all the three equations: 2 (ab+bc+ ca) = 152+162+110 = 424
So ab + bc + ca = 212 -- (10)
(10) - (1) : bc = 60
(10) - (2) : ac = 50
(10) - (3) : ab = 102
So abc)² = 60 *50*102
abc = 60* √85
a(b+c) = 152 -- (1)
b(c+a) = 162 -- (2)
c(a+b) = 170 --- (3)
Add all the three equations: 2 (ab+bc+ ca) = 152+162+110 = 484
So ab + bc + ca = 242 -- (10)
(10) - (1) : bc = 90
(10) - (2) : ac = 80
(10) - (3) : ab = 72
Multiply these three: (abc)² = 90 *80*72
abc = 720
That is the option (d)
=================== with old given data:
a(b+c) = 152 -- (1)
b(c+a) = 162 -- (2)
c(a+b) = 110 --- (3)
(2) - (1): c (b-a) = 10 -- (4)
(3) / (4) : (a+b) / (b-a) = 11
=> 12 a = 10 b => b = 1.2 a -- (5)
Substitute (5) in (3): c * 2.2 a = 110 => c a = 50 --(6)
Substitute (6) in (1): a b = 152 -50 = 102 -- (7)
Substitute (7) in (2): b c = 60 ---(8)
(6) * (7) * (8): ca *ab * bc = (abc)² = 50*102*60
=> abc = 60 * √85
================== Another way:
Add all the three equations: 2 (ab+bc+ ca) = 152+162+110 = 424
So ab + bc + ca = 212 -- (10)
(10) - (1) : bc = 60
(10) - (2) : ac = 50
(10) - (3) : ab = 102
So abc)² = 60 *50*102
abc = 60* √85
Similar questions