If a, b and c are pth, qth and rth term of an AP
Prove that :
a(q - r) + b(r - p) + c(p - q) = 0
Full Explanation needed! ✌️
Answers
a = e + ( p-1) d..... (1)
b = e + ( q-1) d......(2)
c= e + ( r -1)d......(3)
(1) - (2)
a - b= d ( p-q)
p- q = a - b)/d
(2) -(3)
b -c = d( q-r)
q - r= b-c)/d
(1) - (3)
a- c= d( p-r)
p -r = a-c)/d
Now
a( q -r) + b( r-p) + c( p-q)
substitute
a( b-c)/d + b( c-a)/d + c( a-b)/d
ab - ac + bc - ba + ca - cb)/d
0
✌✌✌✌✌Dhruv✌✌✌✌
We know that the n th term of an A.P is given by a₁ + ( n - 1 ) d
where a₁ = first term .
n = number of terms .
d = common difference .
p th term will be a₁ + ( p - 1 ) d
q th term will be a₁ + ( q - 1 ) d
r th term will be a₁ + ( r - 1 ) d
We can write the above things as :
a = a₁ + ( p - 1 ) d .......( 1 )
b = a₁ + ( q - 1 ) d .......( 2 )
c = a₁ + ( r - 1 ) d ......( 3 )
Subtract ( 2 ) from ( 1 ) :
a - b = ( p - 1 ) d - ( q - 1 ) d
Take d as common :
⇒ a - b = d ( p - 1 - q + 1 )
⇒ a - b = d ( p - q ) ......( 4 )
Subtract ( 3 ) from ( 2 ) :
b - c = ( q - 1 ) d - ( r - 1 ) d
Take d as common :
⇒ b - c = d ( q - 1 - r + 1 )
⇒ b - c = d ( q - r ) ......( 5 )
Subtract ( 1 ) from ( 3 ) :
c - a = ( r - 1 ) d - ( p - 1 ) d
Take d as common :
⇒ c - a = d ( r - 1 - p + 1 )
⇒ c - a = d ( r - p ) ......( 5 )
From 4 , 5 and 6 we can write :
p - q = ( a - b )/d .....( 7 )
q - r = ( b - c )/d ....( 8 )
r - p = ( c - a )/d .....( 9 )
a ( q - r ) + b ( r - p ) + c ( p - q )
⇒ a ( b - c )/d + b ( c - a )/d + c ( a - b )/d
⇒ ( ab - ac )/d + ( bc - ab )/d + ( ac - bc )/d
⇒ ( ab - ac + bc - ab + ac - bc )/d
⇒ 0/d
⇒ 0
L.H.S = R.H.S
Hence it is proved !