Math, asked by aryanverma212, 10 months ago


If A, B and C are the unit vectors along the incident ray, reflected ray and the outward normal to the reflector. Then which of the following options is correct?
A)B=A-C
B)B=A+(A.C)C
C)B=2A-C
D)B=A-2(A.C)C​

Answers

Answered by Agastya0606
13

Given: a, b and c are the unit vectors along the incident ray, reflected ray and the outward normal to the reflector.

To find: The correct option from the given choices?

Solution:

  • Let the angle of incidence is α.
  • Now we have given that a is the unit vector along the incident ray.
  • So, the vector form will be: sin α (i) - cos α (j)   ...........(1)

            b is the unit vector along the reflected ray.

  • So  the vector form will be: sin α (i) + cos α (j)    ..........(2)
  • Now lets subtract 1 from 2, we get:

       b(vector) - a(vector) = sin α (i) + cos α (j) - ( sin α (i) - cos α (j) )

                                         = sin α (i) + cos α (j) - sin α (i) + cos α (j)

                                         = 2 cos α (j)         ................(3)

  • Now dot product of a and c vector is:

             a . c = IaI x IcI cos (180 - α)

            But IaI x IcI = 1

            So, a.c = - cos α

            cos α = -a.c         ..............(4)

  • Putting 4 in 3, we get:

           b(vector) - a(vector) = 2 (-a.c) (j)

           b(vector) = a(vector) - 2 x a.c (j)

  • But j(vector) = c(vector) because value is same, so:

          b(vector) = a(vector) - 2 x a.c (c)

Answer:

                   So the correct option is  b(vector) = a(vector) - 2 x a.c(c)      (4th option)

Answered by jhansikoya5
3

Answer:

Hii mate

Step-by-step explanation:

option C is correct ( B=2A-C )

i think this may help you ☺️

Similar questions