Math, asked by reina24, 1 month ago

if a. b and c are zeros of the polynomial x^3 + 3x^2 + 10x - 24 then find the value of 1/a + 1/b +1/c​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a,b,c \: are \: zeroes \: of \:  {x}^{3} +  {3x}^{2} + 10x - 24

Now, we know that

\boxed{\red{\sf a + b + c=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{3}}}}

So,

\bf\implies \:a + b + c=  - \dfrac{3}{1}  =  - 3

Also, we know that

\boxed{\red{\sf ab + bc + ca=\frac{coefficient\ of\  {x}^{2} }{coefficient\ of\ x^{3}}}}

So,

\bf\implies \:ab+ bc + ca= \dfrac{10}{1}  = 10

Also, we know that

\boxed{\red{\sf abc= -  \: \frac{Constant}{coefficient\ of\ x^{3}}}}

So,

\bf\implies \:abc=  - \dfrac{( - 24)}{1}  =  24

Now

Consider,

\rm :\longmapsto\:\dfrac{1}{a} +  \dfrac{1}{b}  + \dfrac{1}{c}

\rm \:  =  \:  \: \dfrac{bc + ca + ab}{abc}

\rm \:  =  \:  \: \dfrac{ab + bc + ca}{abc}

\rm \:  =  \:  \: \dfrac{10}{24}

\rm \:  =  \:  \: \dfrac{5}{12}

Hence,

The value of

\bf :\longmapsto\:\dfrac{1}{a} +  \dfrac{1}{b}  + \dfrac{1}{c}  = \dfrac{5}{12}

Additional Information :-

1. Important identities :-

\boxed{ \rm \:  { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha   + \beta )}^{2}   - 2\alpha  \beta }

\boxed{ \rm \:  { \alpha }^{3}  +  { \beta }^{3}  =  {( \alpha   + \beta )}^{3}   - 3\alpha  \beta( \alpha  +  \beta ) }

\boxed{ \rm \:  {( \alpha  -  \beta )}^{2}  =  {( \alpha  +  \beta )}^{2}  - 4 \alpha  \beta }

2.

\rm :\longmapsto\: \alpha , \:  \beta  \: are \: zeroes \: of \:  {ax}^{2} + bx + c, \: then

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

and

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

Similar questions