Math, asked by rajeshkumarbhag6354, 11 months ago

If a, b and c be three distinct numbers in G.P. and a + b + c = xb then x can not be (A) –2 (B) –3
(C) 4 (D) 2
[JEE Main 2019]

Answers

Answered by abhi178
2

answer : option (D) 2

given, a , b and c be three distinct numbers in G.P and a + b + c = xb

if a , b and c are in geometric progression.

b/a = c/b .........(1)

now a + b + c = xb

⇒x = (a + b + c)/b = a/b + 1 + c/b

⇒x = a/b + 1 + 1/(c/b)

from equation (1) we get,

= a/b + 1 + 1/(a/b)

let (a/b) = r

so, x = r + 1 + 1/r

⇒xr = r² + r + 1

⇒r² + (1 - x)r + 1 = 0

for real value of r, D = (1 - x)² - 4 ≥ 0

= 1 + x² - 2x - 4 ≥ 0

= x² - 2x - 3 ≥ 0

= (x - 3)(x + 1) ≥ 0

so, x ≥ 3 or x ≤ -1 and hence x ≠ 2

hence option (D ) is correct choice.

also read similar questions : if three distinct numbers a,b,c, are in HP, and a^2,b^2,c^2 are in AP then,

a)a+c=b

b)a+b+c=0

c)a+b=c

d)b+c=a

https://brainly.in/question/6275797

if a,b,c,d are in G.P., show that (b-c)^2+(c-a)^2+(d-b)^2=(a-d)^2

https://brainly.in/question/2119448

Answered by Anonymous
16

 \fcolorbox{pink}{white} {\tt{answer}}

a,b,c are \:  in \:  GP

Let \:  'r'  \: be  \: the  \: common  \: ratio \:  then,

 \frac{b}{a}  = r \:  \:  =  > a =  \frac{b}{r}

also,

 \frac{c}{b}  = r \:  \:  \:  =  >c = br

 \therefore \: a + b + c =  \frac{b}{r}  + r + br = b( \frac{1 + r +  {r}^{2} }{r} )

if \: a + b + c = xb

then \: ( \frac{1 + r +  {r}^{2} }{r} ) = x

 \boxed{if \: r < 0 \: and \: r ≠ - 1}

( \therefore \: a,b,c  \: are \:  3 \: distinct \: no.)

Then,

 \frac{1 + r +  {r}^{2} }{r}  = x

 =  >  \frac{1 + r +  {r}^{2} }{r}  + 1 = x + 1

 =  >  \frac{(1 + r {)}^{2} }{r}  = x

 \therefore \: r < 0

There \:  by, \:  \frac{(1 + r {)}^{2} }{r}  < 0( \therefore \: (1 + r {)}^{2}  > 0)

 =  > x + 1 < 0

 =  > x <  - 1

\boxed{if\:r>0\:and\:r≠1}

then, \:\frac{1 + r +  {r}^{2} }{r}=x \: \: =>\frac{1 + r +  {r}^{2} }{r} - 3=x-3

 =  >  \frac{(r-1{)}^{2} }{r}=x-3

Again\:\frac{(r-1{)}^{2} }{r}>0(\therefore \:r>0\: and\:(1+r)^{2}<0)

=>r-3>0

=>r>3

∴    x∈(−∞,−1)∪(3,∞)

\small{\boxed{\pink{Hence,\:x\:can\: not\:be\:2}}}

Similar questions