Math, asked by gurjaniabhishek3031, 11 months ago

Let 0 < θ < π/2 . If the eccentricity of the hyperbola (x²/cos²θ) - (y²/sin²θ) = 1 is greater than 2, then the length of its latus rectum lies in the interval: (A) (3, [infinity]) (B) (3/2, 2]
(C) (2, 3] (D) (1, 3/2]
[JEE Main 2019]

Answers

Answered by Anonymous
1

The length of its Latus Rectum lies in the interval:

(A) (3, [infinity])

  • We know that, the length of Latus Rectum is = \frac{2b^{2}}{a}
  • Now, In case of hyperbola,

\frac{x^{2}}{a^{2}}- \frac {y^{2}}{b^{2}}= 1

\frac{x^{2}}{\cos ^{2}\theta }-\frac{y^{2}}{\sin ^{2}\theta }=1

  • As per the question, e >2
  • Thus, Eccentricity of the hyperbola is-

e=\sqrt{1+\frac{b^{2}}{a^{2}}}

  • Therefore, e=\sqrt{1+\tan ^{2}\theta }  

                             = sec Θ

  • Also,    \sec \left ( \theta \right )&gt;2\Rightarrow \cos \left ( \theta \right )&lt;\frac{1}{2}
  • Thus, \theta \equiv \left ( 60^{\circ},90^{\circ} \right )
  • So, Latus Rectum =  LR =  \frac{2b^{2}}{a}=\frac{2\sin ^{2}\theta }{\cos \theta }=\frac{2\left ( 1-\cos ^{2}\theta \right )}{\cos \theta }

                                               =2\sec \theta -2\cos \theta

  • Since, it is increasing, thus the range of Latus Rectum is (3, [infinity])
Similar questions