If a,b are the zeroes of the polynomial 21y^2-y-2, find a quadratic polynomial whose zeroes are 2a and 2b
Answers
Answered by
17
Α,β are the zeros of 21y²-y-2=0 then, α+β=-(-1/21)=1/21 and α×β=-2/21
i) now, 2α+2β=2(α+β)=2(1/21)=2/21 and 2α×2β=4αβ=4×(-2/21)=-8/21 the equation having zeros 2α and 2β is: x²-(sum of the zeros)x+product of the zeros=0 or, x²-(2/21)x+(-8/21)=0 or, x²-2x/21-8/21=0 or, 21x²-2x-8=0
i) now, 2α+2β=2(α+β)=2(1/21)=2/21 and 2α×2β=4αβ=4×(-2/21)=-8/21 the equation having zeros 2α and 2β is: x²-(sum of the zeros)x+product of the zeros=0 or, x²-(2/21)x+(-8/21)=0 or, x²-2x/21-8/21=0 or, 21x²-2x-8=0
Answered by
6
Step-by-step explanation:
α,β are the zeros of 21y²-y-2=0
then, α+β=-(-1/21)=1/21 and α×β=-2/21
i) now, 2α+2β=2(α+β)=2(1/21)=2/21 and
2α×2β=4αβ=4×(-2/21)=-8/21
the equation having zeros 2α and 2β is:
x²-(sum of the zeros)x+product of the zeros=0
or, x²-(2/21)x+(-8/21)=0
or, x²-2x/21-8/21=0
or, 21x²-2x-8=0
Similar questions