if (a+b):(b+c):(c+a)=6:7:8 and a+b+c=14, find the value of c?
Attachments:
Answers
Answered by
1
(a+b)=6k
(b+c)=7k
(c+a)=8k
Now, we get addition of LHS & RHS
2a+2b+2c=21k
2(a+b+c)=21k
2(14)=21k —————- [given - (a+b+c)=14]
28=21k
k=28/21=4/3 ———————(1)
Since,
a+b+c=14
c=14-(a+b)
we have,
a+b=6k
a+b=6(4/3) ——————-from 1
a+b=8
now,
c=14-(a+b)
c=14–8
c=6
Hope this helps you
....
(b+c)=7k
(c+a)=8k
Now, we get addition of LHS & RHS
2a+2b+2c=21k
2(a+b+c)=21k
2(14)=21k —————- [given - (a+b+c)=14]
28=21k
k=28/21=4/3 ———————(1)
Since,
a+b+c=14
c=14-(a+b)
we have,
a+b=6k
a+b=6(4/3) ——————-from 1
a+b=8
now,
c=14-(a+b)
c=14–8
c=6
Hope this helps you
....
Similar questions