If (a+b):(b+c):(c+a)=6:7:8 and a+b+c=14, then find a:b:c and the value of a, b and c
Answers
Answered by
0
Answer:
a:b:c = (4.66):(3.33):6
a = 4.66
b = 3.33
c = 6
Step-by-step explanation:
Since it is ratios we have to assume it as
6k, 7k, 8k
a+b = 6k
b+c = 7k
c+a = 8k
Adding the above, we get
2a+2b+2c = 21k ----- 1
a+b+c = 14
∴ a + b = 14 - c
Substituting the value in 1
2a + 2b + 2c = 21k
2(a + b) + 2c = 21k
2(14 - c) + 2c = 21k
28 - 2c + 2c = 21k
28 = 21k
28/21 = k
a + b = 6k
14 - c = 6(28/21)
14 - c = 168/21
14 - c = 8
-c = 8 - 14
-c = -6
∴ c = 6
b + c = 7k
b + 6 = 7(28/21)
b + 6 = 9.33
b = 9.33 - 6
∴ b = 3.33
c + a = 8k
6 + a = 8(28/21)
6 + a = 10.66
a = 10.66 - 6
∴ a = 4.66
a:b:c = (4.66):(3.33):6
a = 4.66
b = 3.33
c = 6
Similar questions