If (a+b)/(b+c) = (c+d)/(d+a) then show that either a= c or a+b+c+d= 0
Attachments:
Answers
Answered by
2
Hi--------=====
(a+b)/(b+c)=(c+d)/(d+a)
cross multiple
(d+a)(a+b)=(b+c)(c+d)
da+bd+a^2+ab=bc+bd+c^2+cd
bd is cancel
so
da+a^2+ab=bc+c^2+cd
take a common from lhs and c from rhs
a(d+a+b)=c(b+c+d)
above equation is only possible when
a=c
or
b+c+d=-a
a+b+c+d=0
hope u got ur answer
(a+b)/(b+c)=(c+d)/(d+a)
cross multiple
(d+a)(a+b)=(b+c)(c+d)
da+bd+a^2+ab=bc+bd+c^2+cd
bd is cancel
so
da+a^2+ab=bc+c^2+cd
take a common from lhs and c from rhs
a(d+a+b)=c(b+c+d)
above equation is only possible when
a=c
or
b+c+d=-a
a+b+c+d=0
hope u got ur answer
Answered by
3
(a+b)/(b+c)=( c+d)/(d+a)
........cross multiple....
(d+a)(a+b)=(b+c)(c+d)
da+bd+a^2+ab=bc+bd +c^2+ cd
.............so. bd is cancelled....
So........
da+a^2+ab+=bc+c^2+cd
..............take A comman from LHS and C from RHS .
a(d+a+b) =c (b+c+d)
....,.............above equation is only possible when
A =c
......a+b+c+d=0
....................may be this can help you to got ur answer........
........cross multiple....
(d+a)(a+b)=(b+c)(c+d)
da+bd+a^2+ab=bc+bd +c^2+ cd
.............so. bd is cancelled....
So........
da+a^2+ab+=bc+c^2+cd
..............take A comman from LHS and C from RHS .
a(d+a+b) =c (b+c+d)
....,.............above equation is only possible when
A =c
......a+b+c+d=0
....................may be this can help you to got ur answer........
Alveena1:
plz mark as brainlist
Similar questions