Math, asked by deathhero76, 4 months ago

If (a,b) be the image of point (16,-21) wr.t a line 6x - 7y = 158, then the quadratic
equation whose roots are a & ß, is
x2 – 3x + 28 = 0
x2 + 3x - 28 = 0
x2 - 7x + 12 = 0
x2 + 7 x – 12 = 0​

Attachments:

Answers

Answered by skpillai636
1

Answer:

Step-by-step explanation:

Factoring  x2-3x-28

The first term is,  x2  its coefficient is  1 .

The middle term is,  -3x  its coefficient is  -3 .

The last term, "the constant", is  -28

Step-1 : Multiply the coefficient of the first term by the constant   1 • -28 = -28

Step-2 : Find two factors of  -28  whose sum equals the coefficient of the middle term, which is   -3 .

     -28    +    1    =    -27

     -14    +    2    =    -12

     -7    +    4    =    -3    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -7  and  4

                    x2 - 7x + 4x - 28

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x-7)

             Add up the last 2 terms, pulling out common factors :

                   4 • (x-7)

Step-5 : Add up the four terms of step 4 :

                   (x+4)  •  (x-7)

            Which is the desired factorization

Answered by pavitrasaxena82
0

Answer:

Step-by-step explanation:

Solution :

`x^2+y^2+16x-24y+183=0`

`x^2+16x+64-64+y^2-24y+144-144+183=0`

`(x+8)^2+(y-12)^2+183-208=0`

`(x+8)^2+(y-12)^2-25=5^2`

Center(-8,12)

`4x+7y+13=0-(1)`

`7x+4y+k=0`

`-56+48+k=0`

`k=8`

`7x+4y+8=0-(2)`

From equation 1 and 2

`y=325/65=5`

`y=5`

`4x+7y+13=0`

9`4x+35+13=0`

`x=-12`

(-8,12),(-12,5),(h,k)

`(-8+h)/2=-12`

`h=-16`

`(12+k)/2=5`

`k=-2`

(-16,-2)

`(x+16)^2+(y+2)^2=25`

`x^2+y^2+32x+4y+256+4-25=0`

`x^2+y^2+32x+4y+235=0`.

Similar questions