If a+b+c= 0 and a²+b² + c² = 16 then find ab+bc + ca
Answers
Answered by
3
Answer:
a + b + c =0
a² +b² +c² = 16
(a +b + c )² = a²+ b²+ c² +2ab +2bc+ 2ca
0² = 16 +2(ab +bc+ca)
0 = 16 +2(ab +bc+ca)
-16 = 2(ab+ bc +ca)
-8 = ab + bc + ca
SO UR ANSWER IS -8
PLEASE MARK MY ANSWER AS BRAINLIEST ✌
Answered by
6
ANSWER:
- The value of ab+bc+ca = (-8)
GIVEN:
- a+b+c= 0
- a²+b² + c² = 16 .....(i)
TO FIND:
- ab+bc + ca
SOLUTION:
=> a+b+c=0
Squaring both sides we get;
=> (a+b+c)²= (0)²
=> a²+b²+c²+2ab+2bc+2ca = 0
=>(a²+b²+c²)+2(ab+bc+ca) = 0
Putting (a²+b²+c²) = 16 from eq (i) we get
=> 16 +2(ab+bc+ca)= 0
=> 2(ab+bc+ca)=(-16)
=> (ab+bc+ca) = (-16)/2
=> (ab+bc+ca) = (-8)
The value of ab+bc+ca = (-8)
NOTE:
some important formulas:
- (a+b)²= a²+b²+2ab
- (a-b)²= a²+b²-2ab
- (a+b+c)²= a²+b²+c²+2ab+2bc+2ca
- (a+b)³ = a³+b³+3ab(a+b)
- (a-b)³ = a³-b³-3ab(a-b)
Similar questions