If a + b+c=0 prove that a 4 +b 4 + c 4 =2(a 2 b 2 + b 2 c 2 +c 2 a 2 )
Answers
Answered by
3
Given a+b+c = 0, a4+b4+c4 = 2a2b2+2b2c2+2c2a2
a+b+c = 0
a+b = -c // find a+b value //
(a+b )2 = (-c)2 // squaring on both side //
a2+b2+2ab = c2 // use of identity (a+b )2=a2+b2+2ab //
a2+b2- c2 = 2ab // arrange the terms to obtain the equation //
(a2+b2- c2 )2= (2ab ) 2 // square on both the side and use of identity (a+b+c)2//
(a4+b4+ c4+2a2b2-2b2c2-2c2a2) =4a2b2 // simplify //
a4+b4+ c4+2a2b2-4a2b2-2b2c2-2c2a2 = 0
a4+b4+ c4-2a2b2-2b2c2-2c2a2 = 0
a4+b4+ c4 = 2a2b2+2b2c2+2c2a2
RHS = LHS
a+b+c = 0
a+b = -c // find a+b value //
(a+b )2 = (-c)2 // squaring on both side //
a2+b2+2ab = c2 // use of identity (a+b )2=a2+b2+2ab //
a2+b2- c2 = 2ab // arrange the terms to obtain the equation //
(a2+b2- c2 )2= (2ab ) 2 // square on both the side and use of identity (a+b+c)2//
(a4+b4+ c4+2a2b2-2b2c2-2c2a2) =4a2b2 // simplify //
a4+b4+ c4+2a2b2-4a2b2-2b2c2-2c2a2 = 0
a4+b4+ c4-2a2b2-2b2c2-2c2a2 = 0
a4+b4+ c4 = 2a2b2+2b2c2+2c2a2
RHS = LHS
Similar questions