If a+b+c= 0 prove that a(a2 - bc) + b(b2 - ca) + c(c2- ab) = 0.
Answers
Step-by-step explanation:
a(a2 - bc) + b(b2 - ca) + c(c2- ab)
=a^3 - abc + b^3 - abc + c^3 - abc
=a^3+b^3+c^3-3abc
=(a+b+c)×(a^2+b^2+c^2-ab-bc-ca)
=0 [since a+b+c = 0]
a(a² - bc) + b(b²- ca) + c(c² - ab) = 0
GIVEN
a + b + c = 0
TO PROVE
a(a² - bc) + b(b²- ca) + c(c² - ab) = 0
SOLUTION
We can simply solve the above problem as follows;
We have to prove,
a(a² - bc) + b(b²- ca) + c(c² - ab) = 0
Let us simplify the given expression,
a³ - abc + b³ - abc + c³ - abc
Adding the like terms;
a³ + b³ + c³ - 3abc
We know that;
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
Putting (a+b+c) as 0 in the above equation;
= 0 × (a² + b² + c² - ab - bc - ca)
Since anything multiplied to zero is zero;
= 0
Therefore,
a(a² - bc) + b(b²- ca) + c(c² - ab) = 0
a(a² - bc) + b(b²- ca) + c(c² - ab) = 0 Hence, Proved.
#Spj2