Math, asked by Anonymous, 7 months ago

If a+b+c=0 prove that
 \frac{ {a}^{2} }{bc}  +  \frac{ {b}^{2} }{ab}  +  \frac{ {c}^{2} }{ac}  = 3

Answers

Answered by chhayadokh15
6

Answer:

as \: a + b + c = 0

 {a}^{3}  +  {b}^{3}  +  {c}^{3}  = 0

 =  >  \frac{ {a}^{3}  +  {b}^{3} +  {c}^{3}  }{abc}

 =  >  \frac{3abc}{abc}

 =  > 3

Answered by battuadityarao
2

Answer:

\huge\bold\red{ANSWER}

Step-by-step explanation:

\large{\underline{\rm{\red{SOLUTION :}}}}

\implies \sf \blue{if\:a+b+c=0}\\ \sf \blue {S.O.B.S}\\ \sf \blue {a^2+b^2+c^2+2ab+2bc+2ca=0}\\ \implies \sf \pink {\frac{a^2}{bc}+\frac{b^2}{ab}+\frac{c^2}{ac}=3}\\ \implies \sf \pink {\frac{a^3+b^3+c^3}{abc}=3}\\ \implies \sf \pink {a^3+b^3+c^3=3abc}\\ \sf {this \:occurs\:by\:cubing\:a+b+c=0}

Similar questions