if a+b+c=0 show that a(b+c)^2 +b(c+a)^2 +c(a+b)^2=3abc
Answers
Answered by
1
a + b + c = 0
From this relation :
b + c = - a
c + a = -b
a + b = - c
a + b = -c
cubing on both sides
(a + b)³ = (-c)³
a³ + b³ + 3ab(a + b) = -c³
a³ + b³ + 3ab(-c) = -c³
a³ + b³ + c³ = 3abc
To prove:
a(b+c)² + b(c+a)² + c(a+b)² = 3abc
Taking L.H.S
a(-a)² + b(-b)² + c(-c)² = 3abc
a³ + b³ + c³ = 3abc
3abc = 3abc [ since a³ + b³ + c³ = 3abc]
Hence proved.
Similar questions
English,
3 months ago
Math,
3 months ago
Psychology,
8 months ago
Science,
8 months ago
Science,
1 year ago