If a+b+c= 0 . then find a^2/bc+b^2/ca+c^2/ab
Answers
Answer:
3
Step-by-step explanation:
Given---> If a + b + c = 0
To find---> a²/bc + b²/ca + c²/ab
Solution---> ATQ,
a + b + c = 0
a³+b³+c³-3abc =(a+b+c) (a² + b² + c² - ab - bc - ca )
Now putting , a + b + c = 0 in it , we get,
=> a³+b³+c³ - 3abc = ( 0 ) ( a²+b²+c²-ab-bc-ca )
=> a³ + b³ + c³ - 3abc = 0
=> a³ + b³ + c³ = 3abc
Now returning to original problem , we get,
a² / bc + b² / ca + c² / ab
Taking abc , LCM , we get,
= ( a³ + b³ + c³ ) / abc
Now putting ( a³ + b³ + c³ ) = 3abc , we get,
= 3 abc / abc
abc cancel out from numerator and denominator and we get,
= 3
Additional identities--->
1) a² - b² = ( a + b ) ( a - b )
2) ( a + b )² = a² + b² + 2ab
3) ( a - b )² = a² + b² - 2ab
4) ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
5) ( a + b )³ = a³ + b³ + 3ab ( a + b )
6) ( a - b )³ = a³ - b³ - 3ab ( a - b )
#Answerwithquality&BAL
3
#answerwithquality #bal